

Welcome to Tunir

Tunir is a simple testing tool. The goal is to have a system which is
simple to setup, and easy to maintain.

Note

Please use the gotun [https://gotun.readthedocs.io/en/latest/] project if you want
to spin up your instances on AWS or OpenStack.

Contents:

	Why another testing tool?

	Installation
	Clone the repository

	Install the dependencies

	Usage
	Configuring a new job

	jobname.cfg

	How to execute a multivm job?

	Debugging test vm(s)

	jobname.json

	jobname.txt

	POLL directive

	HOSTCOMMAND directive

	HOSTTEST directive

	Using Ansible

	How to execute the playbook(s)?

	Execute tests on multiple pre-defined VM(s) or remote machines

	Example of configuration file to run the tests on a remote machine

	Start a new job

	Job configuration directory

	Timeout issue

	Using Vagrant jobs
	How to install vagrant-libvirt?

	How to install Virtualbox and vagrant?

	Example of a libvirt based job file

	Example of a Virtualbox based job file

	AWS support
	Example of HVM

	Example of paravirtual

Indices and tables

	Index

	Module Index

	Search Page

Why another testing tool?

I have used Jenkins before. I was maintaining one instance in one of my VPS
instance. The amount of RAM required by Jenkins was too much for my small VM.
I can admit that I am not a great sys-admin anyway.

As part of my daily job, I have to test the latest cloud images we build under
Fedora project. While doing so, I figured out that most of it can be automated
if we have a system to create/maintain/terminate cloud instances. Of course I
do not want any actual cloud, it will be a different monster to maintain.

This is the point where I came up with Tunir. Tunir is a simple testing tool
that will help me run automated tests for the cloud images. I kept the system
generic enough to execute any kind of tests people want.

The configuration is very minimal with Tunir. There is also a golang verion
called gotun [https://gotun.rtfd.io] which has better option to run the tests
inside OpenStack or AWS.

Installation

Tunir is written in Python. Currently it works with Python 3.5+

Clone the repository

$ git clone https://github.com/kushaldas/tunir.git

Install the dependencies

We are currently depended on the following projects or libraries.

	libvirt

	libguestfs

	libguestfs-tools

	ansible

	paramiko

	vagrant-libvirt

	pycrypto

	net-tools

	typing

	python-systemd (python2-systemd package in Fedora)

	Ansible (optional)

	libcloud

You can install them in Fedora by the following command:

$ sudo dnf install libguestfs-tools python3-paramiko docker-io vagrant-libvirt ansible net-tools python3-crypto python3-systemd python3-libcloud

Note

Remember to install python3-systemd package using dnf only

Usage

Tunir is a mini continuous integration (CI) system which can run a set of commands/tests in a
new cloud VM, or bare metal, or in Vagrant boxes based on the job configurations.

The current version can be used along with cron to run at predefined times. Tunir prints
the output in the terminal, it also saves each command it ran, and the output in a text
file located at ‘/var/run/tunir/tunir_results.txt’.

Configuring a new job

There are two different kinds of job configuration files, the newer one is Multi-VM config
which can take any qcow2 image and use them to boot up one or more VMs. The other option
is to use a JSON file based configuration which can be used for vm(s), vagrant images, or
bare metal remote system based testing.

For a Multi-VM configuration for a job called default create default.cfg file as
explained below. We will also require another default.txt file which will contain the
steps for testing.

jobname.cfg

New in version 0.14.

The following example contains a job where we are creating two VMs from the given image
files. The images can be either standard cloud image, or Atomic image. We generate ssh
keys for each run, and use that to login to the box.

[general]
cpu = 1
ram = 1024

[vm1]
user = fedora
image = /home/Fedora-Cloud-Base-20141203-21.x86_64.qcow2

[vm2]
user = fedora
image = /home/Fedora-Cloud-Base-20141203-21.x86_64.qcow2

The above configuration file is self-explanatory.
Each of the vm(s) created from the above configuration will get all the other vms’ IP
details in the /etc/hosts along with vm name. Means vm1 can ping vm2 and vice
versa. For each run, Tunir creates a new RSA key pair and pushes the public key to each
vm, and uses the private key to do ssh based authentication.

How to execute a multivm job?

$ sudo tunir --multi jobname

The above commands expects a jobname.cfg, and a jobname.txt containing the commands,
in the current directory. You can see below for an example of jobname.txt.

Debugging test vm(s)

New in version 0.14.

This can also be used a quick way to get a few vm(s) up. While using Multi-VM configuration,
one can pass –debug command line argument, and this will make sure that the vm(s) do not
get destroyed at the end of the tests. It will create a destroy.sh file, and print the path
at the end of the run. All the vm(s) will be in running condition. You can ssh into them by
using private.key file found in the same directory of the destroy.sh.

When your debugging is done, you can execute the shell script to clean up all the running instances
and any temporary file created by the previous run.

sh /tmp/tmpXYZ/destroy.sh

Warning

The private key remains on the disk while running Tunir in the debug mode. Please remember
to execute the destroy.sh script to clean up afterwards.

jobname.json

This file is the main configuration for the job when we just need only one vm, or using
Vagrant, or testing on a remote vm/bare metal box. Below is the example of one such job.

{
 "name": "jobname",
 "type": "vm",
 "image": "/home/vms/Fedora-Cloud-Base-20141203-21.x86_64.qcow2",
 "ram": 2048,
 "user": "fedora",
}

The possible keys are mentioned below.

	name

	The name of the job, which must match the filename.

	type

	The type of system in which the tests will run. Possible values are vm, docker, bare.

	image

	Path to the cloud image in case of a VM. You can provide docker image there for Docker-based tests, or the IP/hostname of the bare metal box.

	ram

	The amount of RAM for the VM. Optional for bare or Docker types.

	user

	The username to connect to.

	password

	The password of the given user. Right now for cloud VM(s) connect using ssh key.

	key

	The path to the ssh key, the password value should be an empty string for this.

	port

	The port number as string to connect. (Required for bare type system.)

jobname.txt

This text file contains the bash commands to run in the system, one command per line. In case you are
rebooting the system, you may want to use SLEEP NUMBER_OF_SECONDS command there.

If a command starts with @@ sign, it means the command is supposed to fail. Generally, we check the return codes
of the commands to find if it failed, or not. For Docker container-based systems, we track the stderr output.

We can also have non-gating tests, means these tests can pass or fail, but the whole job status will depend
on other gating tests. Any command in jobname.txt starting with ## sign will mark the test as non-gating.

Example:

curl -O https://kushal.fedorapeople.org/tunirtests.tar.gz
ls /
foobar
ls /root
sudo ls /root
date
@@ sudo reboot
SLEEP 40
ls /etc

POLL directive

New in version 0.17.

We also have a POLL directive, which can be used to keep polling the vm for a
successful ssh connection. It polls after every 10 seconds, and timeout is
currently set for 300 seconds. One should this one instead of SLEEP directive
after a reboot.

HOSTCOMMAND directive

New in version 0.18.

Now we have HOSTCOMMAND directive, which can be used to run any command in the
host system itself. One major usecase for this directive wil be for generating
ansible inventory file using a simple script (local). The tests will continue
even if this command fails to execute properly.

HOSTTEST directive

New in version 0.18.

Now we also have the HOSTTEST directive, which will allow us to execute a command
in the host, and count that as a part of the tests. Ansible usage is the best example
for this directive.

For Multi-VM configurations

New in version 0.14.

In case where we are dealing with multiple VMs using .cfg file in our configuration,
we prefix each line with the vm name (like vm1, vm2, vm3). This marks which command
to run on which vm. The tool first checks the available vm names to these marks in the
jobname.txt file, and it will complain about any extra vm marked in there. If one
does not provide vm name, then it is assumed that the command will execute only on
vm1 (which is the available vm).

vm1 sudo su -c"echo Hello > /abcd.txt"
vm2 ls /
vm1 ls /

In the above example the line 1, and 3 will be executed on the vm1, and line 2 will be
executed on vm2.

Using Ansible

Note

If you want to run Ansible playbooks in your test, please have a look at the gotun [https://gotun.readthedocs.io/en/latest/] project, it has
better support for running Ansible, or any other tool in the host as the part of the test.

New in version 0.14.

Along with Multi-VM configuration, we got a new feature of using
Ansible [https://www.ansible.com/] to configure the vm(s) we create. To do so,
first, create the required roles, and playbook in a given path. You can write down
the group of hosts with either naming like vm1, vm2, vm3 or give them
proper names like kube-master.example.com. For the second case, we also have to
pass these hostnames in each vm definition in the configuration file. We also
provide the path to the directory containing all ansible details with ansible_dir
value.

Example configuration

[general]
cpu = 1
ram = 1024
ansible_dir = /home/user/contrib/ansible

[vm1]
user = fedora
image = /home/user/Fedora-Cloud-Atomic-23-20160308.x86_64.qcow2
hostname = kube-master.example.com

[vm2]
user = fedora
image = /home/user/Fedora-Cloud-Atomic-23-20160308.x86_64.qcow2
hostname = kube-node-01.example.com

[vm3]
user = fedora
image = /home/user/Fedora-Cloud-Atomic-23-20160308.x86_64.qcow2
hostname = kube-node-02.example.com

In the above example, we are creating 3 vm(s) with given hostnames.

Note

If the number of CPU is not mentioned in the general section, Tunir will get 1 virtual CPU for the vm.

How to execute the playbook(s)?

In the jobname.txt you should have a PLAYBOOK command as given below

PLAYBOOK atom.yml
vm1 sudo atomic run projectatomic/guestbookgo-atomicapp

In this example, we are running a playbook called atom.yml, and then in the vm1 we
are using atomicapp to start a nulecule app :)

Execute tests on multiple pre-defined VM(s) or remote machines

[general]
cpu = 1
ram = 1024
ansible_dir = /home/user/contrib/ansible
pkey = /home/user/.ssh/id_rsa

[vm1]
user = fedora
ip = 192.168.122.100

[vm2]
user = fedora
ip = 192.168.122.101

[vm3]
user = fedora
ip = 192.168.122.102

Example of configuration file to run the tests on a remote machine

The configuration:

{
 "name": "remotejob",
 "type": "bare",
 "image": "192.168.1.100",
 "ram": 2048,
 "user": "fedora",
 "key": "/home/password/id_rsa"
 "port": "22"
}

Start a new job

$ sudo ./tunir --job jobname

Job configuration directory

You can actually provide a path to tunir so that it can pick up job configuration and commands from the given directory.:

$ sudo ./tunir --job jobname --config-dir /etc/tunirjobs/

Timeout issue

In case if one of the commands fails to return within 10 minutes (600 seconds),
tunir will fail the job with a timeout error. It will be marked at the end of
the results. You can change the default value in the config file with a timeout
key. In the below example I am having 300 seconds as timeout for each command.:

 {
 "name": "jobname",
 "type": "vm",
 "image": "file:///home/vms/Fedora-Cloud-Base-20141203-21.x86_64.qcow2",
 "ram": 2048,
 "user": "fedora",
 "password": "passw0rd",
 "timeout": 300

}

Using Vagrant jobs

Vagrant [https://www.vagrantup.com/] is a very well known system among developers for creating lightweight
development systems. Now from tunir 0.7 we can use Vagrant boxes to test. In Fedora, we can have two
different kind of vagrant provider, libvirt, and virtualbox.

Warning

The same host can not have both libvirt and virtualbox.

Note

Please create /var/run/tunir directory before running vagrant jobs.

How to install vagrant-libvirt?

Just do

dnf install vagrant-libvirt

The above command will pull in all the required dependencies.

How to install Virtualbox and vagrant?

Configure required virtualbox repo

curl http://download.virtualbox.org/virtualbox/rpm/fedora/virtualbox.repo > /etc/yum.repos.d/virtualbox.repo
dnf install VirtualBox-4.3 vagrant -y
dnf install kernel-devel gcc -y
/etc/init.d/vboxdrv setup

Now try using –provider option with vagrant command like

vagrant up --provider virtualbox

Example of a libvirt based job file

{
 "name": "fedora",
 "type": "vagrant",
 "image": "/var/run/tunir/Fedora-Cloud-Atomic-Vagrant-22-20150521.x86_64.vagrant-libvirt.box",
 "ram": 2048,
 "user": "vagrant",
 "port": "22"
}

Example of a Virtualbox based job file

{
 "name": "fedora",
 "type": "vagrant",
 "image": "/var/run/tunir/Fedora-Cloud-Atomic-Vagrant-22-20150521.x86_64.vagrant-virtualbox.box",
 "ram": 2048,
 "user": "vagrant",
 "port": "22",
 "provider": "virtualbox"
}

Note

We have a special key provider in the config for Virtualbox based jobs.

AWS support

Note

Please use the gotun [https://gotun.readthedocs.io/en/latest/] project if you want
to spin up your instances on AWS or OpenStack.

Now we have support to use AWS for testing using Tunir. We can have both HVM,
and paravirtual types of instances to run the test. You will require Python
libcloud [https://libcloud.apache.org/] for the same.

Note

It boots up the instances in us-west-1 zone.

Example of HVM

The following is a JSON file containing the config of a HVM instance.

{
 "name": "awsjob",
 "type": "aws",
 "image": "ami-a6fc90c6",
 "ram": 2048,
 "user": "fedora",
 "key": "PATH_TO_PEM",
 "size_id": "m3.2xlarge",
 "access_key": "YOUR_ACCESS_KEY",
 "secret_key": "YOUR_SECRET_KEY",
 "keyname": "YOUR_KEY_NAME",
 "security_group": "THE_GROUP_WITH_SSH",
 "virt_type": "hvm",
 "timeout": 30
}

Warning

Remember that m3 instances are capable of running HVM.

Example of paravirtual

Another example with paravirtual type of instance.

{
 "name": "awsjob",
 "type": "aws",
 "image": "ami-efff938f",
 "ram": 2048,
 "user": "fedora",
 "key": "PATH_TO_PEM",
 "size_id": "m1.xlarge",
 "access_key": "YOUR_ACCESS_KEY",
 "secret_key": "YOUR_SECRET_KEY",
 "keyname": "YOUR_KEY_NAME",
 "security_group": "THE_GROUP_WITH_SSH",
 "virt_type": "paravirtual",
 "aki": "aki-880531cd",
 "timeout": 30
}

Index

 _static/down.png

nav.xhtml

 Table of Contents

 		Welcome to Tunir

 		Why another testing tool?

 		Installation

 		Clone the repository

 		Install the dependencies

 		Usage

 		Configuring a new job

 		jobname.cfg

 		How to execute a multivm job?

 		Debugging test vm(s)

 		jobname.json

 		jobname.txt

 		POLL directive

 		HOSTCOMMAND directive

 		HOSTTEST directive

 		For Multi-VM configurations

 		Using Ansible

 		How to execute the playbook(s)?

 		Execute tests on multiple pre-defined VM(s) or remote machines

 		Example of configuration file to run the tests on a remote machine

 		Start a new job

 		Job configuration directory

 		Timeout issue

 		Using Vagrant jobs

 		How to install vagrant-libvirt?

 		How to install Virtualbox and vagrant?

 		Example of a libvirt based job file

 		Example of a Virtualbox based job file

 		AWS support

 		Example of HVM

 		Example of paravirtual

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/comment.png

_static/comment-close.png

_static/up.png

